
CoreLinux++ Development Process

The Corelinux Consortium

Revision: 1.2
Created on May 8, 2000

Revised on July 14, 2000

Abstract

This document is the Corelinux++ development process details.

Contents

1 Overview 1

2 Notes 2

3 Requirement Process 2

4 From Requirements to Analysis 3

5 From Analysis to Design 7

6 From Design To Implementation 10

Copyright notice

CoreLinux++ Copyright c© 1999, 2000 CoreLinux Consortium
Revision: 1.2 Last Modified: July 14, 2000
This material may be distributed only subject to the terms and conditions set forth in the Open
Publication License.

1 Overview

Here is a short overview if this document:

• Overview describes the purpose of this document.

• Requirement Process describes how requirements are received, evaluated, and put into play.

• From Requirements to Analysis describes the process by which requirements are analyzed
using a Object Oriented Analysis methodology.

• From Analysis to Design describes the process by which the resulting requirement analysis is
moved into the Object Oriented Design phase.

• From Design to Implementation describes the process by which the resulting design is codified.

1

3 REQUIREMENT PROCESS

Class libraries and frameworks are often the hardest things to implement in any language (C++,
Java, Eiffel) as they need to be useful across a broad range of applications.

The following document will ultimately define, in detail, the Corelinux++ process of bringing a
requirement to implementation. While it is quite typical to ”jump into the code” we believe that a
thorough process, which include analysis and design, prior to coding is more satisfying to the class
library developer, and usage by the application.

We believe that skipping the steps we have chosen as our process results in poorly defined
behavior, difficult adjustment to change, and users who look for better solutions.

The granularity of ownership follows the granularity of this document. A team member owns
a requirement to the point the System Requirement Specification (SRS) document is checked in.
At this point an Analysis, Design, and Implementation task will be created in the respective
Task Groups from our CoreLinux Project page in Source Forge. Any one can then decide to
assign themselves the task of Analysis, then Design when Analysis is complete, and so on for
Implementation.

2 Notes

Here are a few settings to help dealing with Sourceforge in Bourne shell style:

sf_home=userid@corelinux.sourceforge.net:/home/groups/corelinux/
export sf_home
sf_htdocs=userid@corelinux.sourceforge.net:/home/groups/corelinux/htdocs
export sf_htdocs

Read the Consortium [2000b] and Consortium [2000a] to help you through the development
process.

3 Requirement Process

1. All things start with a Requirement request statement (e.g. Corelinux++ should have a
Thread class) regardless of the origin. If it was not originally entered into the Source Forge
Corelinux++ Requirements Forum, it will be placed there and assigned a Requirement ID
which is the Requirement Forum message identifier.

2. A Corelinux++ project member then takes ownership of the Requirement and opens it for
discussion in the mailing list.

3. All Requirements will be reviewed for acceptance and issues in the CoreLinux-public mailing
list.

4. If it is decided that it is not a valid requirement it will be noted with the following:

INVALID This does not represent a requirement that fits into any current, near, or long
term objectives.

DEFERRED For whatever reason, this requirement is being deferred to a later time. The
reason will be noted.

REDIRECTED If a requirement is not correctly categorized into libcorelinux++, lib-
coreframework++, or whatever, it will be redirected to the appropriate module.

2

4 FROM REQUIREMENTS TO ANALYSIS

5. Upon acceptance of a requirement, the owner will need to create a Feature in the Corelinux++
Bug Tracking database. The owner should then assign themselves to the feature , or have
someone do it for them if they do not have the authority. Once the feature has an identifier, it
will be noted in all related work in the CVS message. This includes Requirements, Analysis,
Design, and Implementation. Once the completed implementation is checked-in, the feature
can be closed.

6. Requirements that are accepted will be published to the web-site as follows:

• A Corelinux++ requirement document will be created in the doc/requirements directory
with a file name of reqXXXX.html (where XXXX is the Requirement ID). Here is the
template for this document. The following command will get you going (assuming you
are in the /corelinux/doc directory):
> cp funcreq.html requirements/reqXXXX.html

• Using CVS, the owner will check out the doc/reqs.html requirement index file and add
the entry link. From the /corelinux/doc directory execute:
> cvs update reqs.html

• After testing that the link works, the owner will use SCP to put the new and modified
pages to the web site. From the /corelinux/doc directory execute:

scp reqs.html $sf_htdocs/doc
scp requirements/reqXXXX.html $sf_htdocs/doc/requirements

where userid is your sourceforge user id and XXXX is the Requirement ID.

• Finally, using CVS, the owner adds and commits all necessary files:
> cd requirements > cvs add -m"YYYY Initial add of Requirement XXXX" reqXXXX.html
> cvs commit -m"YYYY Completed Requirement Document XXXX" reqXXXX.html
> cd ..
> cvs commit -m"YYYY Added index entry for Requirement XXXX" reqs.html

where YYYY is the Feature ID and XXXX is the Requirement ID

7. Once a SRS document has been checked in, the owner should notify the mailing list that it
is done. This way some one can assign themselves to the next task.

4 From Requirements to Analysis

1. Before starting the analysis, assign yourself to the respective Analysis task in the project.

2. Analysis will proceed starting with Use-Case Modeling. In use-case modeling, the system is
looked upon as a ”black box” that provides use cases. How the system does this, how the
use cases are implemented, and how they work internally is not important. In fact, when the
use-case modeling is done early in the project, the developers have no idea how the use cases
will be implemented

3. The Analysis model will be used when moving into Design. To minimize the amount of main-
tenance between Analysis and Design, as there is bound to be iterations from requirements,
to analysis and the design, we will use the same model throughout.

3

4 FROM REQUIREMENTS TO ANALYSIS

4. Models are to be managed as follows:

• A model will be created in the doc/models directory using the MagicDraw UML tool.
This model is to be named using the Requirement ID and short description name
(XXXX-NNNNN). The model is to be saved using the MagicDraw UML format. This
will create two (2) files; XXXX-NNNNN.mdf and XXXX-NNNNN.mdr.

• We will only use the default settings for the model. This will keep it consistent.

• Once the model is created it is to be added and committed to CVS from the /core-
linux/doc/models directory:
cvs add -m"YYYYY Initial UML for XXXX-ZZZZ" xxxx-nnnnn.mdf xxxx-nnnnn.mdr

cvs commit -m"YYYYY UML for XXXX-ZZZZ" xxxx-nnnnn.mdf xxxx-nnnnn.mdr

where YYYYY is the Feature ID, XXXX is the Functional Requirement ID and ZZZZ
describes the requirement.
for example:
cvs add -m"100547 Initial UML for 2872-Adapter Pattern" 2872-Adapter.mdf 2872-Adapter.mdr
cvs commit -m"100547 UML for 2872-Adapter Pattern" 2872-Adapter.mdf 2872-Adapter.mdr

5. Use case objectives are

• To decide and describe the functional requirements of the system, resulting in an agree-
ment between the team members.

• To give a clear and consistent description of what the system should do, so that the
model is used throughout the development process to communicate to all developers
those requirements, and to provide the basis for further design modeling that delivers
the requested functionality.

• To provide a basis for performing system tests that verify the system. For example,
asking, does the final system actually perform the functionality initially requested.

• To provide the ability to trace functional requirements into actual cases and operations
in the system. To simplify changes and extensions to the system by altering the use-case
model and then tracing the use cases affected into the system design and implementation.

6. The actual work required to create a use-case model involves defining the system, finding the
actors and the use cases, describing the use cases, defining the relationship between use cases,
and finally validating the model.

7. The use-case model consists of use-case diagrams showing the actors, the use cases, and their
relationships. These diagrams give an overview of the model, but the actual descriptions of
the use cases are typically textual. Both are important!

8. Class diagrams can be created to capture the classes in the use-case model. At this point,
the classes are there to support the sequence or collaboration diagrams only.

9. The use-case model will be used to realize the use case. The UML principles for realizing use
cases are:

• A use case is realized in a collaboration: A collaboration shows an internal implementation-
dependent solution of a use case in terms of classes/objects and their relationship (called

4

4 FROM REQUIREMENTS TO ANALYSIS

the context of the collaboration) and their interactions to achieve the desired function-
ality (called the interaction of the collaboration).

• A collaboration is represented in UML as a number of diagrams showing both the context
and the interaction between the participants in their collaboration. Participating in a
collaboration are a number of classes (and in a collaboration instance: objects). The
diagrams are collaboration, sequence, and activity. The type of diagram to use to give
a complete picture of the collaboration depends on the actual case. In some cases,
one collaboration diagram may be sufficient, in other cases, a combination of different
diagrams may be necessary.

• A scenario is an instance of a use case or a collaboration. The scenario is a specific
operation path (a specific flow of events) that represents a specific instantiation of the use
case. When a scenario is viewed as a use case, only the external behavior toward the actor
is described. When a scenario is viewed as an instance of the collaboration, the internal
implementation of the involved classes, their operations, and their communication is
described.

10. With the exception of the Class Diagram noted above, the Sequence, Collaboration, Activity,
and nested Use Case diagrams should be created in the context of the Use Case they are
intended for. To do this in MagicDraw UML you open the specification of the use case in the
main diagram, click the Diagram tab and create from there.

11. All actors, classes, and diagram specifications are to be documented.

12. MagicDraw UML provides the ability to generate various reports and images. For analysis our
primary concern is the Use-Case report and any use-case, collaboration, sequence, activity,
and class diagrams.

13. To create the Use-Case report:

• Make the Use Case diagram the active window

• Select File->Report

• In the General Options tab (using the Adapter example):

Report File Name : /corelinux/doc/analysis/2872uc.html
Report Title : Adapter Use Case Report

• In the Report Options tab :

General Report Options (all checked)
Use case reports (all checked)
Class reports (just Include class report)
Model dictionary (all checked)

14. To create the associated diagram images:

• Make the diagram the active window but do not have any specific object selected

• Select File->Save Diagram As Image

• In the Save Dialog (using the Adapter Use Case diagram as an example):

Look in : analysis
Files of Type : *.png

5

4 FROM REQUIREMENTS TO ANALYSIS

File Name : 2872uc-AdapterMain
This will generate /corelinux/doc/analysis/2872uc-AdapterMain.png

• Using Adapter Instantiate Sequence as example:

Look in : analysis
Files of Type : *.png
File Name : 2872sq-InstantiateAdapter

This will generate /corelinux/doc/analysis/2872sq-InstantiateAdapter.png

• For other diagrams types use (where XXXX is Requirement ID and NNNNN is brief
description):

XXXXuc-NNNNN Use Case Diagram

XXXXsq-NNNNN Sequence Diagram

XXXXst-NNNNN State Diagram

XXXXco-NNNNN Collaboration Diagram

XXXXac-NNNNN Activity Diagram

XXXXcl-NNNNN Class Diagram

15. Because the MagicDraw UML tool does not generate links to the diagrams, you will need to
add a html page in the analysis directory which references the diagrams generated. If need
be, decorate the page with informative text. The new page should be named XXXX.html
(where XXXX is the Requirement ID), added to CVS and committed.

cvs add -m"YYYYY Initial Analysis Report and Diagrams for XXXX-ZZZZ" xxxx*.*

cvs commit -m"YYYYY Analysis Report and Diagrams for XXXX-ZZZZ" xxxx*.*

for example:

cvs add -m"100547 Initial Analysis Report and Diagrams for 2872-Adapter Pattern"
2872*.*

cvs commit -m"100547 Analysis Report and Diagrams for 2872-Adapter Pattern" 2872*.*

16. The Functional Requirement Document (in the requirements directory) needs to be updated
with links to the report and image pages in the Analysis References line. If need be, references
to other specifications are added to the Cross References line. Don’t forget to commit the
change to CVS as well

cvs commit -m"YYYYY Updated for Analysis links" reqxxxx.html

17. Finally, all of the documentation is to be loaded up to the web page:

[/corelinux/doc]$ cd analysis

6

5 FROM ANALYSIS TO DESIGN

[/corelinux/doc/analysis]$ scp XXXX*.* $sf_htdocs/doc/analysis

[/corelinux/doc/analysis]$ cd ../requirements

[/corelinux/doc/requirements]$ scp reqXXXX.html $sf_htdocs/doc/requirements

5 From Analysis to Design

1. Once an Analysis has been checked in it is available for design. Before starting design, assign
yourself as the Design Task owner.

2. If not already done in the Analysis phase, analysis classes will be divided into functional
packages.

3. Additional technical classes are added.

4. Concurrency needs are identified and modeled through active classes, asynchronous messages,
and synchronization techniques for handling shared (if applicable) resources.

5. As of the current version of MagicDraw UML (3.5) exceptions are specified in the Language
Settings of the function specification dialog. A strong emphasis is placed on exceptions and
faults in the design. This includes both normal and abnormal where:

Normal Those that can be anticipated in the course of performing the functions.

Abnormal Those that can’t be anticipated and must be handled by some generic exception
mechanisms.

6. A strong emphasis is placed on constraints. A constraint is a restriction on an element that
limits the usage of the element or the semantics (meaning) of the element. Constraints are one
way of enforcing the ”contract” by which the objects in a live system may or may not interact.
For example, if class A is constrained to having at most five (5) elements in a collection data
member, a pre-condition constraint would be put on the addElement(ElementCref) method:

pre: = theCollection.size <= 5

7. The dynamic behavior of the design is emphasized. This is done through class, collaboration,
activity, sequence, and state diagrams. The benefit is that it will reduce the implementation
time by having a clear understanding of what the code should be doing.

8. All class methods and members are to be ordered in the diagrams following our standard,
basically:

For members:
Should be protected or private only.

For association, aggregates, containment:
At the very least the cardinality should be specified

7

5 FROM ANALYSIS TO DESIGN

as well as the role names (just one if it is not bi-directional).

For comprehension, the relationship itself
should have a name (typically a verb).

For operations:

Public
constructors,
virtual destructor,
operator overloads,
accessors,
mutators.

Protected
same order

Private
ditto

Indicate virtual or constant where applicable.

9. Return values from methods and arguments will use the Corelinux++ define types (xxRef,
xxPtr, xxCref, xxCptr, etc.).

10. Methods taking no arguments will have a void type with no name assigned.

11. Models and documents (Class Report and Diagrams for Web) are to be managed as follows:

• The model that was created in the corelinux/doc/models directory during analysis will
be used for design. This model is named using the Requirement ID and short description
name (XXXX-NNNNN).

• Before beginning the design work in the model, make sure that the project settings are
changed.

Load the model
Click Options
Click Project...
In the Project Options dialog, select the Code engineering folder
Set Default Language to C++
Now select the Styles Folder and fully expand the default style
Select the ClassView entry
Change Attribute and Operation sorting to No Sorting
Click OK
Save the project

• When the design is complete, commit to CVS from the /corelinux/doc/models directory:
cvs commit -m"YYYYY UML Design for XXXX-ZZZZ" xxxx-nnnnn.mdf xxxx-nnnnn.mdr

where YYYYY is the Feature ID, XXXX is the Functional Requirement ID and ZZZZ
describes the requirement.

8

5 FROM ANALYSIS TO DESIGN

for example:
cvs commit -m"100547 UML Design for 2872-Adapter Pattern" 2872-Adapter.mdf
2872-Adapter.mdr

12. During this phase our primary concern for web documentation is the Class report and any
class, collaboration, state, sequence, and activity diagrams that support the design.

13. To create the Class report:

• Make the Class diagram the active window

• Select File->Report

• In the General Options tab (using the Adapter example):

Report File Name : /corelinux/doc/design/2872uc.html
Report Title : Adapter Class Report

• In the Report Options tab :
General Report Options (all checked)
Use case reports (NOT checked)
Class reports (all checked except Public Members Only)
Model dictionary (all checked)

14. To create the associated diagram images:

• Make the diagram the active window but do not have any specific object selected

• Select File->Save Diagram As Image

• In the Save Dialog (using the Adapter Classes diagram as an example):

Look in : design
Files of Type : *.png
File Name : 2872cl-AdapterClasses

This will generate /corelinux/doc/design/2872cl-AdapterClasses.png

15. Use these naming conventions for other diagrams.

16. Because the MagicDraw UML tool does not generate links to the diagrams, you will need to
add a html page in the design directory which references the diagrams generated. If need be,
decorate the page with informative text. The new page should be named XXXX.html (where
XXXX is the Requirement ID), added to CVS and committed.

cvs add -m"YYYYY Initial Design Report and Diagrams for XXXX-ZZZZ" xxxx*.*

cvs commit -m"YYYYY Design Report and Diagrams for XXXX-ZZZZ" xxxx*.*

for example:

cvs add -m"100547 Initial Design Report and Diagrams for 2872-Adapter Pattern"
2872*.*

cvs commit -m"100547 Design Report and Diagrams for 2872-Adapter Pattern" 2872*.*

9

6 FROM DESIGN TO IMPLEMENTATION

17. The Functional Requirement Document needs to be updated with links to the report and
image pages in the Design References line. If need be, references to other specifications are
added to the Cross References line. Don’t forget to commit the change to CVS as well.

cvs commit -m"YYYYY Updated for Design links" reqxxxx.html

18. Finally, all of the documentation is to be loaded up to the web page:

[/corelinux/doc]$ cd /corelinux/doc/design

[/corelinux/doc]$ scp XXXX*.* $sf_htdocs/doc/design

[/corelinux/doc]$ cd ../requirements

[/corelinux/doc]$ scp reqXXXX.html $sf_htdocs/doc/requirements

6 From Design To Implementation

1. Review the Code Standards or any of the Corelinux++ libcorelinux class declarations for
clarification. This document has been updated to include details on the declaration comments
that are formatted for HTML generation.

2. Before starting implementation, assign yourself as the task owner in the Implementation Task
list.

3. DO NOT CHECK IN PARTIAL IMPLEMENTATIONS OR BROKEN CODE!
Unless what you are working on is part of a joint
effort (class dependencies, etc.), there is no reason to do so. Of course there may be bugs,
but the general idea is that it works when it is
committed.

4. If you must check in exemption code (see above) let others know why, if it isn’t already
known, you are about to do this (mailing list is best bet).

5. For the libcorelinux++ class library, the following steps detail one approach (yours may be
different but the results are the same):

• Create class declarations (ClassName.hpp) in /corelinux/include

• Make sure that the DEFINE_CLASS and class declaration are wrapped in a namespace
corelinux block

• If class is to be included all the time (like Exception), add forward declaration and
include to /corelinux/include/Common.hpp

• Create class definition (ClassName.cpp) in /corelinux/src/classlibs/corelinux

• Make sure that the implementation is wrapped in a namespace corelinux block

• Add class object macro and dependencies to /corelinux/src/classlibs/corelinux/makefile

• Create a directory for example code off of /corelinux/src/testdrivers

• Create the dirs.inc, project.inc, and makefile (support files).

10

6 FROM DESIGN TO IMPLEMENTATION

• If needed, add include directory off of new example code directory

• Create source and optional header files

• Compile, test, stress, make it robust!

• Add all and clean targets for new sample in /corelinux/src/testdrivers/makefile
and test

• From /corelinux run make clean and make all to test

• Add any new directories, support, and source files (hpp and cpp) to CVS and commit

• Commit any updated source or support files to CVS

• Close the Feature in the Corelinux++ project

• Post a message to the mailing list, knowledge of availability is valuable

6. If there is to be a segregation of header files for the main libcorelinux++ shared library
(libcorelinux++.so):

• Add a new directory under /corelinux/include

• Add declaration header new directory

• Add path to new directory in /corelinux/src/classlibs/corelinux/dirs.inc

• Build and run all testdrivers, correct as necessary

• Create and commit in CVS as needed

• Close the Feature in the Corelinux++ project

• Post a message to the mailing list

7. If there is to be a modularization of shared libraries but still part of libcorelinux++ package

• Follow steps for declaration headers

• Add a new directory under /corelinux/src/classlibs

• Add support and implementation files to new directory

• Add all and clean targets for new library in /corelinux/src/classlibs/makefile and
test

• Build and run all testdrivers, correct as necessary

• Create and commit in CVS as needed

• Close the Feature in the Corelinux++ project

• Post a message to the mailing list

8. For the libcoreframework++ :

• Base header files for framework in /corelinux/include/frameworks

• Implementation and support files in /corelinux/src/classlibs/frameworks

• Segregation and modularization resolved as in steps above, relative pathing considered

9. When in doubt, post an e-mail to the mailing list.

11

REFERENCES REFERENCES

References

The Corelinux Consortium. The Corelinux C++ Coding Standards. The Corelinux Consortium,
1.3 edition, May 2000a. http://corelinux.sourceforge.net/cppstnd.php.

The Corelinux Consortium. The Corelinux Object Oriented Design Standards. The Corelinux
Consortium, 1.3 edition, May 2000b.

12

	1 Overview
	2 Notes
	3 Requirement Process
	4 From Requirements to Analysis
	5 From Analysis to Design
	6 From Design To Implementation

